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SUMMARY

We derive electromagnetic finite elements based on a variational principle that uses the electro-
magnetic four-potential as primary variable. This choice is used to construct elements suitable for
downstream coupling with mechanical and thermal finite elements for the analysis of electromag-
netic/mechanical systems that involve superconductors. The key advantages of the four-potential
are: the number of degrees of freedom per node remain modest as the problem dimensional-
ity increases, jump discontinuities on interfaces are naturally accomodated, and static as well
as dynamics are included without any a priori approximations. The new elements are tested
on an axisymmetric problem under steady-state forcing conditions. The results are in excellent
agreement with analytical solutions. '
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1. INTRODUCTION

The present work is part of a research program for the numerical simulation of electro-
magnetic/mechanical systems that involve superconductors. The simulation involves the
interaction of the following four components:

(1) Mechanical Fields: displacements, stresses, strains and mechanical forces.
(2) Thermal Fields: temperature and heat fluxes.

(3) Electromagnetic (EM) Fields: electric and magnetic field strengths and fluxes, cur-
rents and charges.

(4) Coupling Fields: the foundamental coupling effect is the constitutive behavior of
the materials involved. Particularly important are the metallurgical phase change
phenomena triggered by thermal, mechanical and EM fields.

1.1 Finite Element Treatment

The first three fields (mechanical, thermal and electromagnetic) are treated by the finite
element method. This treatment produces the spatial discretization of the continuum into
mechanical, thermal and electromagnetic meshes of finite number of degrees of freedom.
The finite element discretization may be developed in two ways:

(1) Simultaneous Treatment. The whole problem is treated as an indivisible whole. The
three meshes noted above become tightly coupled, with common nodes and elements.

(2) Staged Treatment. The mechanical, thermal and electromagnetic components of the
problem are treated separately. Finite element meshes for these components may
be developed separately. Coupling effects are viewed as information that has to be
transferred between these three meshes.

The present research follows the staged treatment. More specifically, we develop finite
element models for the fields in isolation, and then treat coupling effects as interaction
forces between these models. This “divide and conquer” strategy is ingrained in the parti-
tioned treatment of coupled problems [4,16], which offers significant advantages in terms of
computational efficiency and software modularity. Another advantage relates to the way
research into complex problems can be made more productive. It centers on the obser-
vation that some aspects of the problem are either better understood or less physically
relevant than others. These aspects may be then temporarily left alone while efforts are
concentrated on the less developed and/or more physically important aspects. The staged
treatment is better suited to this approach.

1.2 Mechanical Elements

Mechanical elements for this research have been derived using general variational principles
that decouple the element boundary from the interior thus providing efficient ways to work
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out coupling with non-mechanical fields. The point of departure was previous research into
the free-formulation variational principles reported in Ref. [5]. A more general formulation
for the mechanical elements, which includes the assumed natural strain formulation, was
established and reported in Refs. [5,6,14,15]. New representations of thermal fields have
not been addressed as standard formulations are considered adequate for the coupled-field
phases of this research.

2. ELECTROMAGNETIC ELEMENTS

The development of electromagnetic (EM) finite elements has not received to date the
same degree of attention given to mechanical and thermal elements. Part of the reason
is the widespread use of analytical and semianalytical methods in electrical engineering.
These methods have been highly refined for specialized but important problems such as
circuits and waveguides. Thus the advantages of finite elements in terms of generality have
not been enough to counterweight established techniques. Much of the EM finite element
work to date has been done in England and is well described in the surveys by Davies [1]
and Trowbridge [21]. The general impression conveyed by these surveys is one of an un-
settled subject, reminiscent of the early period (1960-1970) of finite elements in structural
mechanics. A great number of formulations that combine flux, intensity, and scalar po-
tentials are described with the recommended choice varying according to the application,
medium involved (polarizable, dielectric, semiconductors, etc.) number of space dimen-
sions, time-dependent characteristics (static, quasi-static, harmonic or transient) as well
as other factors of lesser importance. The possibility of a general variational formulation
has not apparently beem recognized.

In the present work, the derivation of electromagnetic (EM) elements is based on a vari-
ational formulation that uses the four-potential as primary variable. The electric field is
represented by a scalar potential and the magnetic field by a vector potential. The for-
mulation of these variational principle proceeds along lines previously developed for the
acoustic fluid problem [7,8].

The main advantages of using potentials as primary variables as opposed to the more
conventional EM finite elements based on intensity and/or flux fields are, in order or
importance:

1. Interface discontinuities are automatically taken care of without any special interven-
tion.

2. No approximations are invoked a priors since the general Maxwell equations are used.
3. The number of degrees of freedom per finite element node is kept modest as the
problem dimensionality increases.

4. Coupling with the mechanical and thermal fields, which involves derived fields, can
be naturally evaluated at the Gauss points at which derivatives of the potentials are
evaluated.

Following a recapitulation of the basic field equations, the variational principle is stated.
3



The discretization of these principle into finite element equations produces semidiscrete
- dynamical equations, which are specialized to the axisymmetric case. These equations are
validated in a simulation of a cylindrical conductor wire.

3. ELECTROMAGNETIC FIELD EQUATIONS

8.1 The Mazwell Equations

The original Maxwell equations (1873) involve four spatial fields: B, D, E and H. Vec-
tors E and H represents the electric and magnetic field strengths (also called intensities),
respectively, whereas D and B represent the electric and magnetic flux densities, respec-
tively. All of these are three-vector quantities, that is, vector fields in three-dimensional
space (21 =z,z2 =y, 23 = 2):

E= Ez ) D= Dg ’ E = E2 ’ H-= Hg . (1)
E3 D3 E3 H3

Other quantities are the electric current 3-vector j and the electric charge density p (a
scalar). Units for these and other quantities of interest in this work are summarized in
Tables 1-2.

With this notation, and using superposed dots to denote differentiation with respect to
time t, we can state Maxwell equations as*

B+VXE=0’ VXH—b=js

(2)
V:-D =p, vV.-B=0.

The first and second equation are also known as Faraday’s and Ampére-Maxwell laws,
respectively.

The system (2) supplies a total of eight partial differential equations, which as stated are
independent of the properties of the underlying medium.

3.2 Constitutive Equations

The field intensities E and H and the corresponding flux densities D and B are not
independent but are connected by the electromagnetic constitutive equations. For an
electromagnetically isotropic, non-polarized material the equations are

B=uH, D=¢E (3)

* Some authors, for example Eyges [2], include 47 factors and the speed of light ¢ in the Maxwell
equations. Other textbooks, e.g. [19,20], follow Heaviside's advice in using technical units

that eliminate such confusing factors. 4



Tadble 1 Electric and Magnetic Quantities

Quantities Symbol MKS-Weber Units

Electric charge density p  coulomb/m?

Electric field intensity E newton/coulomb

Electric flux density D coulomb/m?

Electric resistance R ohm

Electric conductivity g mho

Displacememt current density D coulomb/(sec.m?)
Susceptibility* € coulomb/(joule.m)

Current J  coulomb/sec

Magnetic field intensity H newton/weber or amperes/m

Magnetic flax density B  weber/m?

Magnetic permeabilityt p  weber/(joule.m) or henry/m
* Also called capacitivity and permittivity

t Also called inductivity

Table 2 Equivalences Between Various MKS-Giorgi Unita

1 newton = 1 kg.m/sec?
1 joule = 1 newton.m
1 watt = 1 joule/sec
1 coulomb = 1 ampere.sec
1 ohm = 1 volt/ampere
1 farad = 1 coulomb/volt
) 1 henry = 1 (volt.sec)/ampere
1 weber = 1 volt.sec
1 mho =1 ohm™!

where 4 and € are the permeability and susceptibility, respectively, of the materialt. These
coefficients are functions of position but (for static or harmonic fields) do not depend on
time. In the general case of a non-isotropic material both 4 and € become tensors. Even
in isotropic media u in general is a complicated function of H; in ferromagnetic materials
it depends on the previous history (hysteresis effect).

In free space u = uo and € = ¢o, which are connected by

1
Ho€o

(4)

=
where c¢ is the speed of light in a free vacuum. In MKS-A units, ¢o = 3.10° m/sec and

po =4m x 1077 henry/m, €0 = pgleg? = (367) " x 107! sec?/(henry.m) (5)

t Other names are oftem used, see Table 1.
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The condition u =~ puo holds well for most practical purposes in such media as air and
copper; in fact pg, = 1.000000440 and pcopper = -99999u0.

The electrical field strength E is further related to the current density j by Ohm'’s law:

j=gE (6)

where g is the conductivity of the material. Again for an non-isotropic material g is
generally a tensor which may also contain real and imaginary components; in which case
the above relation becomes the generalized Ohm’s law. For good conductors g >> ¢; for
bad conductors ¢ << ¢. In free space, g = 0.

8.8 Mazwell Equations in Terms of E and B

To pass to the four-potential considered in Section 4 it is convenient to express Maxwell’s
equations in terms of the electrical field strength E and the magnetic flux B. In fact this
is the pair most frequently used in electromagnetic work that involve arbitrary media. On
eliminating D and H through the constitutive equations (3) we obtain

B+VXE=0, VxB-—pucE-=yj,

(7)
V.E = p/e, vV.B=0.

The second equation assumes that ¢ is independent of time; otherwise €E = ¢ dE/dt should
be replaced by d(¢E)/dt. In charge-free vacuum the equations reduce to

B+VxE=0, VxB—%E:O,
€0 (8)
V-E=0, vV.B=0.

3.4 The Electromagnetic Potentials

The electric scalar potential & and the magnetic vector potential A are introduced by the
definitions

E=-V®d-A, B=VxA. (9)

This definition satisfies the two homogeneous Maxwell equations in (7). The definition of
A leaves its divergence V - A arbitrary. We shall use the Lorentz gauge [13]

V-A+ued=o0. (10)

With this choice the two non-homogeneous Maxwell equations in terms of ® and A separate
into the wave equations

V26 - ped = —p/e, V2A — pueA = —uj. (11)



4. THE ELECTROMAGNETIC FOUR-POTENTIAL

Maxwell’s equations can be presented in a compact manner* in the four-dimensional space-
time defined by the coordinates

T1=2, Z3=Y, Tz3=2, zT4=ict (12)

where z,,z3,z3 are spatial Cartesian coordinates, 12 = —1 is the imaginary unit, and
¢ = 1/,/ué is the speed of EM waves in the medium under consideration. In the sequel
Roman subscripts will consistently go from 1 to 4 and the summation convention over
repeated indices will be used unless otherwise stated.

4.1 The Field Strength Tensor

The unification can be expressed most conveniently in terms of the field-strength tensor
F, which is a four-dimensional antisymmetric tensor constructed from the components of
E and B as follows:

0 F12 F13 F14 0 C.Bs —-CBg —iEl
_ —Flz 0 F23 F34 c_isf —CB3 0 c31 —iEz
F= —Fi13 —Fo3 0 F34 =5 ¢B; —e¢B; 0 —i1E3 (13)
—Fiy4 —Fas -F34 O 1E, tE, 1E3 0

Here 8 is an adjustment factor to be determined later. Similarly, introduce the four-current
vector J as :

J1 cuI1 K“J1
Jo | det Cliga Ki2
J = = A = .
Ja A cuj3 Be KI3 (14)

J4 ip/e i\u/ep

Then, for arbitrary 3, the non-homogeneous Maxwell equations, namely V x B — u¢E = “i
and V - E = p/e¢, may be presented in the compact “continuity” formt

OF
oz

= J;. (15)

The other two Maxwell equations, V-B =0 and V x E + B = 0, can be presented as

OF;x + OF + Fm
Oz m Oz az;

=0, (16)

where the index triplet (s, 7, k) takes on the values (1,2,3), (4,2,3), (4,3,1) and (4,1,2).

* A form compatible with special relativity.

t The covariant form of these two equations. 7



4.2 The Four-Potential

The EM “four-potential” ¢ is a four-vector whose components are constructed with the
electric and magnetic potential components of A and ®:

é1] cAy
_al) %2 | det ] cA;
¢ - ﬂ ¢3 - CA3 . (17)
b4 1P
It may then be verified that F can be expressed as the four-curl of ¢, that is
_9¢x 94
Fye = 3::; aI); ’ (18)

or in more detail and using commas to abbreviate partial derivatives:

0 $21—P1,2 P31 —F13 Pa1— P14
F= $1,2 — P2,1 0 32— P23 Pa,2— P24 (19)
$1,3— P31 2,3~ P32 0 43— P34 |
D14 — P41 P2,4— Da,2 P34 P43 0
4.8 The Lagrangian

With these definitions, the basic Lagrangian of electromagnetism can be stated as}

2
L = {FuFi - Jig; = 5° (éﬁ" - %> ~ Jigs

3::; Tk (20)
2
= 16%(c*B* - E?) - ﬂ_e'(lel + 1242 + 73Aa — p®),
in which
B*=BTB=B?+B?+ B2 E*=ETE=E?+E?+E3 (21)
Comparing the first term with the magnetic and electric energy densities [2,19,20]
um = 1BTH = ia’, u, = iDTE = 1¢E?, (22)
we must have $%2¢? = §2/(ue) = 1/u, from which
B = e (23)

1 Lanczos [12] presents this Lagrangian for free space, but the expression (24) for an arbitrary

material was found in none of the textbooks on electromagnetism listed in the References.
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Consequently the required Lagrangian is

1 PR .
L= ﬂB’ — $€E? — (141 + j24;3 + jaAs — pB). (24)

The associated variational form is

R=/:/VLdvat (25)

where V is the integration volume considered in the analysis. In theory V extends over
the whole space, but in the numerical simulation the integration is truncated at a distant
boundary or special devices are used to treat the decay behavior at infinity.

4.4 The Four-Field Equations

On setting the variation of the functional (24) to zero we recover the field equations (15-
16). Taking the divergence of both sides of (15) and observing that F is an antisymmetric
tensor so that its divergence vanishes we get

aJ;

—t = V:.i+51=0 26
The vanishing term in parenthesis is the equation of continuity, which expresses the law
of conservation of charge.” The Lorentz gauge condition (10) may be stated as V- ¢ = 0.
Finally, the potential wave equations (11) may be expressed in compact form as

O¢i = —-J; (27)
where [J denotes the “four-wave-operator”, also called the D’Alembertian:

det 0?2 _32+62+62_ a?
© Ozidzk  Oz2 Az ' Az c2at?

(28)

Hence each component of the four-potential ¢ satisfies an inhomogeneous wave equation.
In free space, J; = 0 and each component satisfies the homogeneous wave equation.



§. THE AXISYMMETRIC TEST EXAMPLE

- The simplest example for testing the finite element formulation based on the four-potential
variational principle is provided by the axisymmetric magnetic field generated by a uniform,
steady current flowing through a straight, infinitely long conducting wire of circular cross
section. In the present Section we derive expressions for the magnetostatic fields outside
and within the conductor. These analytical solutions will be later compared with the finite
element numerical solutions.

5.1 The Free-Space Magnetic Field

To take advantage of the axisymmetric geometry we choose a cylindrical coordinate system
with the wire centerline as the longitudinal z-axis. The vector components in the cylindrical
coordinate directions r, 8 and z are denoted by

Ay, By, E; in the r direction
A2, B,, E; in the § direction
A3z, B3, E3 in the z direction

The electromagnetic fields will then vary in the radial direction (r) but not in the angular
() and axial (2) directions. Similarly, the current density that flows in the wire has only
one nonzero component acting in the positive or negative z direction; conventionally we
select the positive direction.

In Cartesian coordinates the radial component of the electrostatic potential in free space
can be calculated from the expression (see, e.g., [2,10,18,19,20])

ko [ Js
Ay =A3=— | =dV, 29
* T am Jy Ir (29)
where |r| is the distance between the elemental charge j3 dV and the point in space at which
we wish to find the field potential. The integral extends over the volume containing charges.
This expression serves equally well in cylindrical coordinates. In fact, the transformation
of z components will be one to one if the center of the systems coincide.

As noted above the only non-vanishing component of the current vector is j3 dS where dS
is the elemental cross sectional area of the conductor and jj is the current density in the z
direction. If df represents the differential length of the wire, then f gJadV = f gJ3dSdl =
I'dl = Idz and |r| = /r2 + 22, Substitution into Eq. (29) yields

A (30)

(+) uol /' o dz

3 — ere— e e—— &
4r —00 3 /r2 + 22

This integral diverges, but this difficulty can be overcome by taking the wire to have a

finite length 2L symmetric with respect to the field point, that is large with respect to its

diameter. Integrating between —L and +L we get

Az(r) = ol bl (z + Vr2 4+ 22) Ez (31)

/L dz |

—— = ——— N

a7 J_p Vr2 + 22 4
10



Expanding this equation in powers of r/L and retaining only first-order terms gives

__ Bl |
Ag = (2ﬂ_)lnr+C. (32)

where C is an arbitrary constant. For subsequent developments it is convenient to select
C = (uol/2x) InRr, where Ry is the “truncation radius” of the finite element mesh in the

radial direction. Then p
— _ [ Bo r
As = (2r)ln(RT)' (33)
With this normalizatiom A3 = 0 at r = Ry. Taking the curl of A gives the B field in
cylindrical coordinates:

0A d0A
B, B, %Wa_ z 0
B=V><A={B,}={B,}= 04, _94s 109} (3
1
r

Bs B, d(rA, 0
_194
r r gv

It is seen that the only mon-vanishing component of the magnetic flux density is

04 _ kol

or 2rr (35)

By =B; = poHy = -

This expression is called the law of Biot-Savart in the EM literature.
5.2 Magnetic Field Withsn the Conductor

Again restricting our comsideration to the static case, we have from Maxwell’s equations
in their integral flux form

ch-ds=fcu“‘B-ds=/sj-ds, (36)

where C is a contour around the field point traversed counterclockwise with an oriented
differential arclength ds and dS is the oriented surface element inside the contour. The
term for the electric field disappears in this analysis because E = 0. From before we know
that the right hand side of Eq. (35) is equal to the normal component of the current that
flows through the cross sectional area evaluated by the integral. In the free space case, this
is the total current that flows through the conductor. But in the conductor the amount
of current is a function of the distance r from the center. Again using I to represent the
total current carried by the conductor, and R the radius of the conductor, and assuming
an uniform current density j3 = I/(wR?2), the right hand side of (35) become_A

. . I r
LJ-dS:/;JadS=”—m[9dS=I-k7. (37)
11



Evaluating the left hand side of the integral and solving for B, gives:

2
-1 rt — ulr
27ru~ " B, —IRz' B, TR
Comparing with (34) we see that if 4 = uo then B; is continuous at the wire surface r = R
and has the value uol/(27R). But if u # uo there is a jump (u — po)I/(27R) in B;.

The magnetic potential Asg within the conductor is easily computed by integrating —B5
with respect to r:

(38)

+C. (39)

The value of C is determined by matching (33) at r = R, since the potential must be
continuous. The result can be written

oot fblog) e @]

The preceding expressions (33)-(40) for A3 could also be derived in a somewhat more direct
fashion by integrating the ordinary differential equation V2A3 = r~1(8(rdA3/9r)dr) =
#j3 to which the second of (11) reduces.

6. FINITE ELEMENT DISCRETIZATION

6.1 The Lagrangsan sn Cylindrical Coordinates
To construct finite element approximations we need to express the Lagrangian (24)

_1 2 ,
L—2“B 3€E? — (j TA - p9d), (41)

in terms of the potentials written in cylindrical coordinates. For B? we can use the
expression of the curl (33)

2_ (1943 34;\* (941 945\  [19(rd)) 1984,\°
B (r o0 8z + oz or + r or r 89 ’ (42)

For E? we need the cylindricalcoordinate gradient formulas

3d , .

El Er 3—+A1
E={E; = Eg = 1%%’-+A , (43)

E; E,
9% +4s
so that
3% 084 19% 44 3® A8A3\?
T 1 2 o® 3

B =EE= (8r+6t)+(r80+8t>+(6z+8t)' (44)

12



In the axisymmetric case, A; = Az = 0; furthermore A, = A3 is only a function of the
radial distance from the wire. Therefore 343/30 = dA3/3z = 0. From symmetry consid-
erations we also know that the electric field cannot vary in the 8 and z directions, which
gives 3®/8z = 3%/88 = 0. Finally, the only nonvanishing current density component is
Js. Consequently the Lagrangian (41) simplifies to

p=2 (%) - 4(3) '+ ()] -weas-omr| o

6.2 Constructing EM Finite Elements

To deal with this particular axisymmetric problem a two-node “line” finite element ex-
tending in the radial r direction is sufficient. -In the following we deal with an individual
element identified by saperscript e. The two element end nodes are denoted by ¢ and j.
The electric potential ® and the magnetic potential A3 = A, are interpolated over each

element as

?°=N§®°, Aj=N4AS, (46)

Here row vectors Ng and N% contain the finite element shape functions for ¢ and Ag,
respectively, which are only functions of the radial coordinate r:

o = (Ngi(r) Ng;(r)), a=(NZ(r) Ngi(r), (47)

and column vectors @€ and Aj contain the nodal values of ® and Aj, respectively, which
are only functions of time t:

v {3) ()

Substitution of these finite element assumptions into the Lagrangian (45) and then into
Eq. (25) yields the variational integral as sum of element contributions R = }_, R®, where

we [ (ea) e (GRe)  (BRa)]

- (j3N;A; - pN;<1>=) dve dt.

where V¢ denotes the volume of the element. Taking the variation with respect to the
element node values gives

t aNe ToNe e Toave =€ . e

§ (s2°)7T Ns )" N g, p(NS)T| aveat.
/u, / . [ sy ]

13
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On applying fixed-end initial conditions at t = t; and t = ¢; and the lemma of the calculus
of variations, we proceed to equate each of the expressions in brackets to zero. From the
first bracket we obtain for each element the following second-order dynamic equations for
the magnetic potential at the nodes, which are purposedly written in a notation resembling
the mass-stiffness-force equations of mechanics:

M4A; + KSAS =15, (51)

where T .
My = [ TNV, K;:/.%(";A) aave,  (52)
fi= [ i @7 ave. (53)

From the second bracket we obtain for the electric potential a simpler relation which does
not involve time derivatives, i.e, is static in nature:

K3d° =1fg, (54)
where T
[ e
K¢ = / e (a?r") 3:" e, fe =/‘ »(N5)T dve. (55)

Assembling these equations in the usual way we obtain the semidiscrete master finite
element equations:

MsA3+ K A3 =1
Ko® =fp.

6.8 The Static Case

In time-independent problems, the term A3 disappears from (56) and the master finite
element equations of electromagnetostatics become

KAA:; = fA, K¢Q = f¢. (57)

If the current density and charge distributions are known a priors then these two equations
may be solved separately. If only the charge distribution p is known then the second
equation should be solved first to obtain the electric field E as gradient of the computed
electric potential ®; then the current density j can be obtained from Ohm’s law (6) and
used to computed the force vector f4 of the first equation, which is then solved for the
magnetic potential. Conversely, if only the current density distribution is known e prior:
the preceding steps are reversed.

For the present test problem the current distribution is assumed to be known, and we shall
be content with solving the first equation for the magnetic flux.

14



6.4 An Alternative Semusdiscretization

_ If upon setting the brackets of the variation (50) to zero we multiply them through by x
and 1/e, respectively, the expressions for the mass, stiffness and force matrices become

T e
¢ __ l e \T pge e C_/ aN‘.l aNA e c_/ + are T e
MA—fV.cz(NA) N4 dve, K4 = V‘( = 5 4V = | wisNLTave,

aNs\ T oN¢ 1
e __ & o e __ ol e\T
s=/ . ( ar) 2V, f.,-/;. -0 (N3)T V.

(58)
The matrices M and K above are quite similar to the capacitance and reactance matrices,
respectively, obtained in the potential analysis of acoustic fluids [7,8]. Another attractive
feature of (58) is that K4 = Kp if the shape functions of both potentials coalesce, as is
natural to assume. These advantages are, however, more than counterbalanced by the fact
that “jump forces” contributions to f, and fy arise on material interfaces where x4 and
¢ change abruptly, and the proper handling of such forces substantially complicates the
programming logic. Note that this issue does not arise in the treatment of homogeneous
acoustic fluids.

6.5 Applying Boundary Conditions

The finite element mesh is necessarily terminated at a finite size, which for the test prob-
lemn is defined as the truncation radius Rt alluded to in Section 5.1. In static calculations
the material outside the FE mesh may be viewed as having zero permeability u, or, equiv-
alently, infinite stiffness or zero potential. It follows that the potential value at the node
located on the truncation radius may be prescribed to be zero. This is the only essential
boundary condition necessary for this particular problem.

7. NUMERICAL VALIDATION

7.1 Finste Element Model

The test problem consists of a wire conductor of radius R transporting a unit current
density. For this problem the finite element mesh is completely defined if we specify the
radial node coordinates r§ = r; and ri = r7_, for each element e. If the mesh contains N,
elements inside the conductor, those elements are numbered e = 1,2, ... N.. and nodes
n=1,2 ... N+ 1 starting from the conductor center outwards. The first node (n = 1)
is at the conductor center r = 0 and node n = N..+1 is placed at the conductor boundary
r = R. The mesh is then continued with N.s elements into free space, with a double
node at the counductor boundary. The last node is placed at r = Rz at which point the
free space mesh is truncated; usually Rt = 4R to 5R. Although the mesh appears to be
one-dimensional, a typical element actually forms a “tube” of longitudinal axis z, internal

radius r{ and external radius i extending a unit distance along z.
15
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For the present study the magnetic potential was linearly interpolated in r, using the linear
shape functions ¢
Ni=(31-¢ 1(1+¢), - (59)

where £ is the dimensionless isoparametric coordinate that varies from —1 at node ¢ to
+1 at node j. This interpolation provides for C° continuity of the potential inside the

conductor and in free space.

For the calculation of the element stiffnesses and force vectors, it was assumed that the
permeability 4 and the current density j3 were uniform over the element. Then analytical
integration over the element geometry gives

e _Hrm[ 1 -1 e _ - %(2rf+r;-)
Ka= ¢ [—1 1]’ f“—Jse{%(rf+2r;) ’ (60)

where r = 3(rf + r¢) is the mean radius and £ = r;i —r{ the radial length. For the test
problem, u is constant inside the conductor whereas outside it 4 = ug was assumed to
be unity. The longitudinal current density is j3 = I/(7mR?) inside the conductor whereas
outside it j3 vanishes.

The master stiffness matrix and force vector were assembled following standard finite el-
ement techniques. The only essential boundary condition was the setting of the nodal
potential on the truncation boundary to zero, as explained in Section 6.5. The modified
master equations were processed by a conventional symmetric skyline solver, which pro-
vided the value of the magnetic potential at the mesh nodes. The magnetic flux density
B3, which is constant over each element, was recovered in element by element fashion
through the simple finite difference scheme

s A% - 43

;= — ~
B; = or ]

This value is assigned to the center of element e.

(61)

7.2 Numerical Results

The numerical results shown in Figures 1 through 6 pertain to a unit radius conductor
(R = 1), with the external (free space) mesh truncated at Ry = 5. The element radial
lengths r; —ri were kept constant and equal to 0.25, which corresponds to 4 internal and
16 external elements.

The computed values of the potential A3 are compared with the analytical solution given
by Egs. (33) and (40). As can be seen the agreement is excellent. The comparison between
computed and analytical values of the magnetic lux density B, shows excellent agreement
except for the last element near the wire center, at which point the difference scheme
(61) loses accuracy. The permeability of free space is conventionally selected to be unity.
Figures 1, 3, and 5 illustrate the case where the wire permeability gyire is set to 10.0,
whereas Figures 2, 4, and 6 are for the case in which py.re is 1.0, that is, same as in
free space. (The value of the susceptibility ¢ does not appear in these magnetostatic
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computations.) Figures 1 and 2 show computed and analytical magnetic potentials. The
slope discontinuity at r = 1 in Figure 1 is a consequence of the change in permeability u
from the wire material to free space. Figures 3 and 4 show the computed and analytical
magnetic flux densities. As discussed in Section 5.2, the jump at r = 1 in Figure 3 is due
to the change in permeability u from the material to free space. Figures 5 and 6 show the
computed and analytical magnetic flux densities in free space with more detail. Note that
Figures 5 and 6 for r > 1 are identical; this is the expected result because, as shown in
Section 5.1, the free-space magnetic flux field depends only upon the current enclosed by
a surface integral around the wire and not on the details of the interior field distribution.

In summary, the finite element model performed very accurately in the test problem and
converged, as expected, to the analytical solution as the size of the elements decreased.

8. CONCLUSIONS

The results obtained in the one-dimensional steady-state case are encouraging, and appear
to be extensible to two- and three-dimensional problems without major difficulties. The
electric field remains effectively decoupled from the magnetic field except through Ohm’s
law. Care must be taken, however, in modeling the forcing function terms so as to avoid
the appearance of discontinuity-induced forces at physical interfaces.

The next step in achieving the goal of a finite element model for a superconductor field is to
study the time-dependent case, starting with harmonic currents and proceeding eventually
to general transients. The code for this is currently written, but a suitable analytical
solution for comparison with computed responses is still being developed.

If encouraging results are obtained in the dynamic case, thermocoupling effects will be
added to the code. References [3,17,22] discuss several different approaches applicable to
various contexts (e.g. eddy currents) and these will have to be investigated for suitability
for capturing the couplings effects that are relevant to the superconducting problem.

After modeling the coupling effects, the next step will be to model the superconducting
fields. The feasibility of using the current model for superconductor applications is great,
as the current density of a superconductor can be approximated by the standard current
density multiplied by a constant squared. This constant is called the London penetration
depth. Other analytical models that possess similar characteristics have been developed
and are presented in Ref. [11].
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APPENDIX: COMPUTER PROGRAM

This Appendix lists the computer program used to test the new electromagnetic elements on the
axisymmetric test example. Sections of the program that pertain to the in-core skyline solver
SKYFAC/SKYSOL and the command langnage reader TinyClip are not listed here. Their source
code is presented in the following publications:

Felippa, C. A., Solution of Equations with Skyline-Stored Symmetric Coefficient Matrix,
Computers & Structures, B, 1975, pp. 13-25

Felippa, C. A., A Command Reader for Interactive Programming, Engtneering Computations,
3, No. 3, 1985, pp. 203-238

C=DECK AAWIRE

C=BLOCK FORTRAN
progran WIRE

c

MUMEL, MUMNP, MDOF

(MUMEL=100, MUMNP=MUMEL+1)

(MDOF=MUMNP)

numel, numnp, ndof

integer
paraneter
parameter
integer

CCLVAL

1tatus*60
" nodelm(2,MUMEL), betag(MUMNP)
Iomelm(MUMEL) , kepselm(MUMEL)
d1lp(0:MDOF)

a(MUMNP) , b(MUMEL)

r(MUMNP), £(MUMNP), fbc(MUMNP)
sn(MDOF*3)

aex(MUMNP), bex(MUMEL), fex(MUMNP)
v1i(MUMNP), v2(MUMEL)

kmu, keps, wrad, trad, inten
nelvir, nelext

character
character
integer

double precigion
integer

double precision
double precision
double precision
double precision
double precision
double precision
integer

1000 continue

call
call
call
call
call
call

MATERIAL
PRINTMAT

PRINTDIM
CURRENT
PRINTCUR
c

1600
c

continue

(loma, keps)
(lomu, keps)

DIMENSIONS (wrad, trad)

(wrad, trad)
(intaen)
(inten)

call
call
call

SUBDIVIDE (nelwir, nelext, numel, numnp, ndof)
PRINTSUB (nelwir, nelext, numel, numnp, ndof)
GENELEMS
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$
s
’
s
$
$
c
4000
c
C=END

call
call
call
call
call

call

(nelvir, nelext, kmu, keps, nodelm, kmuelm, kepselm)

PRINTELM (numel, nodelm, kmuelm, kepselm)

GENNODES (nelwir, nelext, wrad, trad, r)

GENBCTAG (numnp, bectag)

PRINTNOD (numnp, r, betag)

GENEXACT (numel, numnp, r, wrad, trad,
kmu, inten, sex, bex)

ASSEMSTF

(numel, nodelm, kmuelm, kepselnm,
numnp, r, ndof, bctag, sm, dlp, status)
if (status .ne. ° °) go to 4000

call

call

SKYMUL (sm, ndof, dlp, aex, fex, O, vi, v2)
ASSEMFOR

(oumel, nodelm, kmuelm, kepselm, inten,
numnp, r, wrad, trad, ndof, bctag, £, fbc, status)
iz (status .ne. *' *) go to 4000

call

CLREAD (* Go ahead and solve (y/n)? *, * *)

i2 (CCLVAL(1) .me. °Y') go to 4000

call

SKYCOV (sm, ndof, dlp, fbc, a, status)

iz (status .ne. * °) then
call ERROR ('SKYCOV’', status)
end if

call
call
call

PRINTSOL (numnp, r, bctag, £, a, aex, fex)
MAGFIELD (numel, nodelm, r, a, b)
PRINTMAG (numel, nodelm, r, b, bex)

continue

call

CLREAD . (* New FE subdivision (y/n)? *, * *)

it (CCLVAL(1) .eq. 'Y') go to 1500

call

CLREAD (* New problem data (y/n)? *, * *)

if (CCLVAL(1) .eq. 'Y') go to 1000

stop
end
FORTRAN

‘C=DECK ASSEMFOR
C=PURPOSE Assenmble forcs vector
‘C=BLOCK FORTRAN

$
$

subroutine ASSEMFOR
(numel, nodelm, kmuelm, kepselm, inten,
numnp, r, wrad, trad, ndof, bctag, f, fbc, status)
integer numel, nodelm(2,*), numnp
integer ndof, bctag(ndof)
integer eldof(2)

double precision r(*), Xmuelm(*), kepselm(x*)

double

precision inten, wrad, trad

double precision 2(x), fbe(*)

charact
double
integer

status

er*(*) status
precision re(2), fe(2), mu
i, j, n, ne

do 1600 j = 1,ndotf
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2(§) = 0.0
1600 continue
c
do 3000 1ne = 1,numel
do 2200 i = 1,2
= nodeln(i,ne)
re(i) = =r(n)
eldof(i) = n
2200 continue
pu = Jomelm(ne)
call FORCE (ne, re, inten, wrad, fe, status)
i (satatus .ne. * *) then
call ERROR (°ASSEMFOR’, status)
end if

do 2600 i = 1,2
j = eldof(i)
2(§) = 2(j) + 2e(i)
2800 continue
(o]
3000 continue
do 4000 j = 1,ndof
tbe(j) = 2(§)
it (betag(j) .ne. 0) fbe(j) = 0.0
4000 continue
return
end
C=END FORTRAN
C=DECK ASSEMSTF ‘
C=PURPOSE Assemble mester stiffness matrix
C=BLOCK FORTRAN
subroutine ASSEMSTF
$ (numel, nodelm, kmuelm, kepselm,
$ numnp, r, ndof, betag, sm, dlp, status)
character*(x) status
integer numel, nodelm(2,numel), numnp
integer ndof, bctag(ndof), dip(0:ndof)
double precisiorn Xmuelm(numel), kepselm(numel)
double precision r(andof), sm(x)
double precision re(2), sme(2,2)

integer eldof(2)
integer i, j. k, ii, jj. n, ne
c
status = 't
C
call FORMDLP (numel, nodelm, ndof, bectag, dlp)

do 2600 i = 1,abs(dlp(ndot))
sn(i) = 0.0
25600 continue

do 4000 ne = {,numel
do 2200 i =1,2
n= nodeln(i,ne)
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re(i) = r(n)
eldof(i) = =m
2200 continue

call STIFF (ne, re, kmuelm(ne), sme, status)
i? (status .pe. ° °*) then

ecall ERROR (’ASSEMSIF', status)
end if

do 83600 i = 1,2
ii = eldof{4i)
do 3500 j = 1,2
jj = eldof(j)
iz (§j§ -le. ii) then
k= abe(dlp(ii)) - ii + jj
sm(k) = sm(k) + sme(i,j)
end it
3600 continue
3800 continue
c
4000 continue
c
return
and
C=END FORTRAN
C=DECK CURRENT
C=PURPOSE Read current intensity
C=BLOCK FORTRAN _
subroutine CURRENT (inten)
double precisior DCLVAL
double precision inten

call CLREAD (° Enter current intensity: *, ' °*)
inten = DCLVAL(1)

return

end

C=END FORTRAN
C=DECK DIMENSIONS
C=PURPOSE Read problem dimensions (wire and truncation radius)
C=BLOCK FORTRAN
subroutine DIMENSIONS (wrad, trad)
double precisiomn DCLVAL
double precisiomn wrad, trad
call CLREAD (° Enter wire radius, trunc radius: ', * °')
wrad = DCLVAL(1)
trad = DCLVAL(2)
return
and
C=END FORTRAN
C=DECK ERROR
C=PURPOSE Fatal error termination subroutine
C=BLOCK FORTRAN
subroutine ERROR (name, message)
charactaer*(*) name, message
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integer 1,1

l= len(message)
do 1200 i = len(message),i,-1
if (message(i:i) .ne. *® *) go to 1300
1= 4
1200 continue
1300 continue
print *», * °
print #, ‘xx* Fatal error condition detected *#*x’
print *, message(i:l) .

print *, °‘Error detected by °, name
stop ‘*x*x Error stop »**’
end

C=END FORTRAN

C=DECK FORCE

C=PURPOSE Compute node forces for axisymm EM element due to j
C=BLOCK FORTRAN

subroutine FORCE

$ (ne, re, inten, wrad, fe, status)

integer ne .

double precision re(2), inten, wrad, fe(2)

character*(*) status

double precision ri, rj, ra, fn

c

statug = ° °*

ri = re(1)

rj = re(2)

if (rj .le. ri) . then
write (status,’'(A,IB)°)

$ ‘FORCE: Negative or zero length, element’.,ne
return

end if

rm = 0.5*%(ri+rj)

iz (rm .1t. wrad) then
fn = (inten/(3.14169+*wrad**2))*(rj-ri)
fe(1) = fnx(ri+ri+rj)/e.
fe(2) = fnx(ri+rj+rj)/e.

else
te(l) = 0.0
te(2) = 0.0

end if

return

end

C=END FORTRAN
C=DECK FORMDLP
C=PURPOSE Form diagonal location pointer (DLP) array
C=BLOCK FORTRAN
subroutine FORMDLP

$ (numel, nodelm, ndof, bctag, dlp)
integer numel, nodelm(2,numel), ndof
integer betag(ndof), dlp(0:x)

integer i, j. kX, n, ne, eldof(2), nsky
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do 1200 i = QO,ndof
dlp(i) = O
1200 continue
do 2000 ne = i . numel
do 1600 i = 1,2
n = nodelm(i,ne)
eldof(i) = =n
1600 continue
do 1800 i = 1.2
k= eldof (1)
do 1800 j = 1,2
i2 (eldof(j) .le. k) then ,
dlp(k) = max(dlp(k),k-eldof(j)+1)

end if
1800 continue
2000 continue

do 2200 i = 1,ndof
dip(i) = dip(i-1) + dlp(i)
2200 continue
nsky = abs (d1p(ndof))

c
print *(/'" No of equations: **,110) * ,ndot
priat '('*' Average bandwidth: **,F12.1) ' ,21loat(nsky) /ndot
print °('’ Entries to store skyline:'',I10)°’,nsky
print ‘(°* ')’
C

do 3000 i = i,ndof
i? (bctag(i) .ne. 0) dlp(i) = -abs(dlp(i))
3000 continue
return
end
C=END FORTRAN
C=DECK GENBCTAG
C=PURPOSE Generate potential BC data by fixing externmost node
C=BLOCK FORTRAN
subroutine GENBCTAG (numnp, bectag)
integer numnp, betag(x)
integer a
do 2000 n = 1,numnp
betag(n) = 0
2000 continue
betag(numnp) =
return
end
C=END FORTRAN
C=DECK GENELEMS
C=PURPOSE Generate element data
C=BLOCK FORTRAN
subroutine GENELEMS

$ (nelvwir, nelext, kmu, keps, nodelm, kmuelm, kepselm)
integer nelwir, nelext
integer nx, n, ne, nodelm(2,*)
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double precision kmu, keps, kmuelm(*), kepselm(x)

n= 0

ne = 0

do 2000 nx = 1, ,nelvwir
n= n+1

ne= ne +1
nodeln(i,ne) = n
nodelm(2,ne) = n+i
kmuelm(ne) = I
kepselm(ne) = keps
2000 continue
do 3000 nx = 1,nelext
n= n+1
ne= ne +1
nodelm(i,ne) = n
nodeln(2,ne) = n+!
kmuelmn(ne) = 1.0
kepselm(ne) = 1.0
3000 continue
return
end
C=END FORTRAN
C=DECK GENEXACT
C=PURPOSE Generate exact magnetic potential/field solutions
C=BLOCK FORTRAN
subroutine GENEXACT (numel, numnp, r, wrad, trad,
$ kmu, inten, mex, bex)
integer numel, numnp
double precision r(*), wrad, trad, kmu, inten
double precision aex(nummnp), bex(numel)
integer n, ne
double precigion ¢, rm

c = -(inten/(2*3.14169))*log(wrad/trad)
do 2000 n = 1{,pumnp
iz (r{(n) .1t. wrad) then
aex(n) = (kmu*inten/(4*3.1415908))*(1.-(r(n)/wrad)**2) + ¢
else
sex(n) = -(inten/(2+3.14169))*log(r(n)/trad)
end if
2000 continue
do 3000 ne = 1,numel
rm = 0.6«(r(ne)+r(ne+i))
iz (rm .le. wrad) then
bex(ne) = (kmu*inten/(2*3.14159))x*(rm/wrad+*2)
else
bex(ne) = (inten/(2+3.14169))/rm
end if
3000 continue
return
end
C=END FORTRAN
C=DECK GENNODES
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C=PURPOSE Generate node data
C=BLOCK FORTRAN
subroutine GENNODES (nelwir, nelext, wrad, trad, r)
integer nelwir, nelext
integer n, ne
double precision wrad, trad, r(*)

n= 0
do 2000 ne = i, melvir
n= n+1i
r{n) = (ne-1)*wrad/nelwir
2000 continue
r(a+tl) = wrad
do 3000 ne = { nelext
n= n+\
r(n) = vwrad + (ne-1)*(trad-wrad)/nelaext
3000 continue
r(a+l) = trad
return
end
C=END FORTRAN
C=DECK MAGFIELD
C=PURPOSE Computed magnetic field (B) at element center
C=BLOCK FORTRAN
subroutine MAGFIELD (numel, nodelm, r, 2, b)

integer numel, nodelm(2,numel)
double precision r(*), a(*), b(numel)
integer ne, ni, nj

do 2000 ne = 1. nunmel
ni = nodeln(1.ne)
aj = nodelm(2,ne)
b(ne) = -(a(mj)-a(ni))/(r(nj)-r(ni))
2000 continue
return
end
C=END FORTRAN
C=DECK MATERIAL
C=PURPOSE Read material properties
C=BLOCK FORTRAN
subroutine MATERIAL (kmu, Xkeps)
double precision  kmu, keps
double precision  DCLVAL
call CLREAD (* Enter X¥mu, keps for wire: °, * ‘)
kmu = DCLVAL(1)
keps = DCLVAL(2)
return
end
C=END FORTRAN
C=DECK PRINTCUR
C=PURPOSE Print current intensity
C=BLOCK FORTRAN
subroutine PRINTCUR (inten)
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double precision inten
print ‘(’'’ Current intensity:’’,F10.3)°’,inten
return
end
C=END FORTRAN
C=DECK PRINTDIM 4
C=PURPOSE Print problem dimensions (vwire and truncation radius)
C=BLOCK FORTRAN
subroutine PRINTDIM (wrad, trad)
double precision wrad, trad

print ‘(°* VWire radius:’*,F10.8)°,vrad
print °‘(’’ Truncation radius:’’,F10.8)°,trad
return
end

C=END FORTRAN

C=DECK PRINTELM
C=PURPOSE Print element data

C=BLOCK FORTRAN
subroutine PRINTELM (numel, nodelm, kmuelm, kepselm)

integer i, n, numel, nodelm(2,%)

double precision Imuelm(*), kepselm(x)
print *, ° -=e-ccccccccccccocoocoaa- *
print *, ‘El ement Deta’

print *, ' -=-cccccccccccccnccccaaa- '
print =*,

$ ' Elem I J kmu keps’
do 2000 n = 1,numel
print °'(315,2F9.3)°, n,(nodelm(i,n),i=1,2),lomeln(n), kepselm(n)
2000 continue
return
: end
C=END FORTRAN
C=DECK PRINTMAG
C=PURPOSE Print computed and exact magnetic field (B)
C=BLOCK FORTRAN
subroutine PRINTMAG (numel, nodelm, r, b, bex)

integer numel, nodelm(2,numel)
double precision r(x),b(numel),bex(numel)
integer ne, ni, nj
o

print *, ' ecccccccccmcccccccmccccceas '
print *, 'Magnetic Field’
print *, ° ~-ecccccccccccccrecccccaa- '
print =*,
$ ' Elem r-center Comp-B2 Exact-B2'
do 2000 ne = 1,numel

ni = nodelm(i,ne)

nj = nodelm(2,ne)

print °(I5,F10.3,2F11.4)"',ne,0.5+(r(ni)+r(nj)),
$ b(ne) ,bex(ne)

2000 continue

return
end
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C=END FORTRAN
C=DECK PRINTMAT
C=PURPOSE Print material properties used in problem
C=BLOCK FORTRAN
subroutine PRINTMAT (lomu, keps)
double precision lmu, keps
print °(’*’ Rel. permeability of vire (vacuum=i):*’,F10.8)°,kmu
print *(°* Rel. permittivity of wire (vacuum=1):°°,F10.8)°,keps
return
end
C=END FORTRAN
C=DECK PRINTNOD
C=PURPOSE Print elsment data
C=BLOCX FORTRAN
subroutize PRINTHNOD (zumnp, r, betag)

integer n, numnp, bectag(*)

double precision r(*)

print *, ' c-cccmecccccccnccnccnnna- '
priant *, ° Node Data’
print *, ’ cceccccccccccccccnnccnnan ’
print *, ° Node r-coord bctag’

do 2000 n = {,nmumnp
print °‘(I8,F10.8,16)°', n,r(n),bectag(n)
2000 continue
raturn
end
C=END FORTRAN
C=DECK PRINTSOL .
C=PURPOSE Print computed and exact solution
C=BLOCK FORTRAN '
subroutine PRINTSOL (numnp, r, betag, £, a, aex, fex)

integer n, numnp, betag(numnp)

double precision r(numnp), £(numnp)

double precision a(numnp), eex(numnp), fex(numnp)
print *, ° --ecc-mececccccccccccnnnncincccnaa-- '
print *, " Computed Solution’
Print *, ' coscecsccccccccccccccnccccocnonaa- '
print =,

$ ° VNode r betag Comp-for’,

$ Comp-A3 Exact-A3 Exact-for'
do 2000 n = 1, numnp
print °'(16,F10.3,16,4F11.4)',n, r(n),bctag(n),
$ £(n) ,a(n) ,aex(n) ,fex(n)
2000 continue
return
end
C=END FORTRAN
C=DECK PRINTSUB
C=PURPOSE Print subdivision data
C=BLOCK FORTRAN
subroutine PRINTSUB (nelwir, nelext, numel, numnp, ndof)
integer nelwir, nelext, numel, numnp, ndof
print ‘(‘‘' Subdivisions in wire :'*,16)°, nelwir
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print ‘(" Subdivisions in free space:’'’,I8)’, nelext
print ‘(’’ Number of elsments :**,16)°, numel
print ('’ Number of node points :**,16)*, numnp
print '('’ Number of dofs :**,16)°, ndof
return
end

C=END FORTRAYN

C=DECK SKYCOV

C=PURPOSE Cover routine for stiffness solver

C=AUTHOR C. A. Felippa, March 1972

C=VERSION November 1982 (Fortran 77)

C=THISVERSION Condensed on November 86 for ME593 HW

C=EQUIPMENT Machine independent

C=KEYWORDS solve skyline stiffness equation

C=BLOCK ABSTRACT

SKYCOV is e cover routine that solves the master
stiffness equations

Kus=s2Z
SKYCOV calls SKYFAC to factor the skyline-stored
nagter stiffness matrix K. If the factorization is
successful SKYCOV then calls SKYSOL to solve for u.

oo

C=END ABSTRACT
C=BLOCK USAGE

c

c The calling sequence is

c

c CALL SKYCOV (s, N, DLP, F, U, STATUS)

c

c Input arguments:

c

c S Skyline stored stiffness matrix
C Overwritten by factorization.

C N Number of equations

C P Nodal force vector

c DLP Skyline diagonal location pointer
c

Cc Output arguments:

c

c U Computed displacements if no error detected.
C STATUS Status character variable.

c blank no error detected

c nonblank explanatory error message
c

C=END USAGE

C=BLOCK FORTRAN
subroutine SKYCOV
$ (s, n, dlp, £, u, status)

ARGUMENTS

oo

integer n, dlp(0:x)
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ana

Qo

double precisiom s(*), £(*), u(*)
character*(*) status

TYPE & DIMENSION

integer idetex, negeig, ifail, NMAX
paraneter (MMAX=3000)

double precision  aux(NMAX), detcf, delta, DOTPRD
external DOTPRD

LeGIC

status = °* °

iz (a .gt. FMAX) then
writs (status,’(A,I168)')°No. of equations exceeds °,6NMAX
retura

end it

call SKYFAC

$ (s, 0, n, n, d1p, aux, DOTPRD, .true., .false.,
$ 0, 0, 0.0, detcf, idetex, negeig, ifail)

if (ifail .gt. 0) then
write (status,’(A,I6,A)°)

$ ‘Factorization sborted at equation °,ifail,
$ °' (matrix appears singular)’

return
end if

call SKYSOL

$ (s, n, dlp, DOTPRD, O, 1, £, u, O, O, aux, delta)

return
end

C=END FORTRAN

C=DECK STIFF

C=PURPOSE Construct stiffness matrix of axisymmetric EM element
C=BLOCK FORTRAN

subroutine STIFF (ne, re, mu, s, status)
integer ne

double precision re(2), mu, 8(2,2)
character*(*) status

double precision ri, rj, rl, rm

status = * °

ri = re(1)

rj = re(2)

rl = rj - ri

it (rl .le. 0.0) then
write (status,"(A,IB5)’)

$ 'STIFF: Negative or zero length, element’,ne
return

end if

™ = 0.6*(ri+rj)

8{(i1.1)= rm/(rl*mu)
8(2.2)= a(1.,1)
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s(1,2)= -a(1,1)
s(2,1)= 8(1,2)
return
. end
C=END FORTRAN
C=DECK SUBDIVIDE
C=PURPOSE Read subdivision data

C=BLOCK FORTRAN
subroutine SUBDIVIDE (nelwir, nelext, numel, numnp, ndof)

integer nelvir, nelext, numel, numnp, ndof
integer ICLVAL
call CLREAD (* Subdivisions in wire: *, * °*)
nelvwir = ICLVAL(1)
call CLREAD (* Subdivisions in free space: °, ' °)
nelext = ICLVAL(1)
numel = nelwir + nelext
numnp = numel + {
ndof =  numnp
return
end
C=END FORTRAN
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